MATHEMATICS
MFP3
Unit Further Pure 3

A
 ASSESSMENTand
 QUALIFICATIONS
 ALLIANCE

Friday 26 January 20071.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP3.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The function $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=\ln \left(1+x^{2}+y\right)
$$

and

$$
y(1)=0.6
$$

(a) Use the Euler formula

$$
y_{r+1}=y_{r}+h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with $h=0.05$, to obtain an approximation to $y(1.05)$, giving your answer to four decimal places.
(b) Use the improved Euler formula

$$
y_{r+1}=y_{r}+\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

where $k_{1}=h \mathrm{f}\left(x_{r}, y_{r}\right)$ and $k_{2}=h \mathrm{f}\left(x_{r}+h, y_{r}+k_{1}\right)$ and $h=0.05$, to obtain an approximation to $y(1.05)$, giving your answer to four decimal places.
(6 marks)

2 A curve has polar equation $r(1-\sin \theta)=4$. Find its cartesian equation in the form $y=\mathrm{f}(x)$.

3 (a) Show that x^{2} is an integrating factor for the first-order differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2}{x} y=3\left(x^{3}+1\right)^{\frac{1}{2}} \tag{3marks}
\end{equation*}
$$

(b) Solve this differential equation, given that $y=1$ when $x=2$.

4 (a) Explain why $\int_{0}^{\mathrm{e}} \frac{\ln x}{\sqrt{x}} \mathrm{~d} x$ is an improper integral.
(1 mark)
(b) Use integration by parts to find $\int x^{-\frac{1}{2}} \ln x \mathrm{~d} x$.
(c) Show that $\int_{0}^{\mathrm{e}} \frac{\ln x}{\sqrt{x}} \mathrm{~d} x$ exists and find its value.

5 Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y=6+5 \sin x \tag{12marks}
\end{equation*}
$$

6 The function f is defined by $\mathrm{f}(x)=(1+2 x)^{\frac{1}{2}}$.
(a) (i) Find $\mathrm{f}^{\prime \prime \prime}(x)$.
(ii) Using Maclaurin's theorem, show that, for small values of x,

$$
\mathrm{f}(x) \approx 1+x-\frac{1}{2} x^{2}+\frac{1}{2} x^{3}
$$

(b) Use the expansion of e^{x} together with the result in part (a)(ii) to show that, for small values of x,

$$
\mathrm{e}^{x}(1+2 x)^{\frac{1}{2}} \approx 1+2 x+x^{2}+k x^{3}
$$

where k is a rational number to be found.
(c) Write down the first four terms in the expansion, in ascending powers of x, of $\mathrm{e}^{2 x}$.
(1 mark)
(d) Find

$$
\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}(1+2 x)^{\frac{1}{2}}-\mathrm{e}^{2 x}}{1-\cos x}
$$

7 A curve C has polar equation

$$
r=6+4 \cos \theta, \quad-\pi \leqslant \theta \leqslant \pi
$$

The diagram shows a sketch of the curve C, the pole O and the initial line.

(a) Calculate the area of the region bounded by the curve C.
(b) The point P is the point on the curve C for which $\theta=\frac{2 \pi}{3}$.

The point Q is the point on C for which $\theta=\pi$.
Show that $Q P$ is parallel to the line $\theta=\frac{\pi}{2}$.
(c) The line $P Q$ intersects the curve C again at a point R.

The line $R O$ intersects C again at a point S.
(i) Find, in surd form, the length of $P S$.
(ii) Show that the angle $O P S$ is a right angle.

END OF QUESTIONS

